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THE LAPLACIAN AND THE KOHN LAPLACIAN
FOR THE SPHERE

DARYL GELLER

Introduction

In [2], Folland studied the Cauchy-Riemann (5,,) complex on the sphere in
C"*!, using the representation theory of the unitary group U(n + 1), hoping
to use the analysis as an approximating model for general strongly pseudo-
convex domains. The work was greatly complicated by the absence of an
explicit formula for the associated Kohn Laplacian [J,, or its fundamental
solution, and soon Folland embarked upon the notion of using the Heisen-
berg group H" instead of the sphere as the model. This work was completed
with Stein in [3].

It turns out that [J, on S, = $2"*! does indeed have a simple explicit
form. We compute it directly from the definitions in this paper, obtaining the
analogues of the Folland-Stein £, operators; and we show how it can be
applied. Along the way, we shall meet the analogue of Lewy’s unsolvable
operator for S;, and derive necessary and sufficient conditions for its local
solvability, in analogy in [S]. We also prove local analytic hypoellipticity on
(p, g)-forms when 0 < g < n; this is now known on general strongly pseudo-
convex manifolds ([7] and [8], independently), but the general proofs are very
complex. At any rate, our main purpose is to show the reader a simple way of
handling analysis on S, in full analogy to that on H", and we think our
methods have much wider applicability.

The computation of [, is almost identical to that of the ordinary Lapla-
cian on forms on the sphere §” c R"*! which does not seem to be in the
literature. It is of lesser interest, being elliptic; but we think the comparison is
instructive, so we include it. Although we do not refer to it, the reader should
first read the first seven sections of [3] since H” is easier. '

Jiri Dadok and Reese Harvey [1] have, independently of us, computed a
“fundamental solution” for [,, without finding our formula for [J,. They
used the work of Henkin and Skoda. We do not compute a fundamental
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solution, but instead show how to solve 5;‘-closed forms explicitly, then solve
the general case implicitly; this is good enough to deal with any application
we know.

As is customary we restrict to (0, g)-forms on S, noting that all results go
over to (p, g)-forms.
* We announced this result in [4]. We would like to thank E. M. Stein and J.
J. Kohn for very valuable.discussions. Although we do not refer to it for
proofs, this paper draws heavily on the work of Folland [2], both concretely
and for inspiration.

1. The Computation
On C**! (n > 0) we write 3, =0/9z, 3, = 9/9z(0 < j < n); on R"*! we
write D, =93/0x; (0 < j <n). IfJ—(j,,---,jq)whereO Sp ot adg<n,
we wrlte
dz(J)=dz; \ - - - Ndz, dx(J) = dx; N\~ - - Ndx; .
If 1 < k < n, we also write
(ks J) = (ko jis = -+ 5 dp), dz(k,J) = dz((k, J)), etc.

If B denotes the bundle of anti-holomorphic tangent vectors in C**!, one
defines 3: C®(AY(B*)) — C*(A?*(B*)) by 3(fdz(J)) = 32 8,f dz(k, J) and
extending linearly; similarly for forms defined only locally.

We place the metric on C* with d,,+ - - , d,,d,,* * * , 9, being orthonormal
(volume element 27"+ times the usual one). On S, we use the metric ¢, >
which is the restriction of the metric on C* (volume element 2**1/? times
the usual one). Weputd = (9, - - -, 9,),dz = (dzy, - - -, dz,), - = dot prod-
uct. Nowif X € TC"atz € S,, X € TS, iff X(|z) = 0,iff X Li(z- 9 + Z-
9) = 8/09|z% iff d|z|2, X) = O (where d|z|2 =z-di+ 7-dz).Puto=z-dz

= 3|z Let T,;, = CI(S,) N B; one defines 3,: C(AYT3)) —
C°°(A"+'(T5‘1)) by letting the value of a,,w at any point z be the orthogonal
projection of dw, onto A7+ (T%,) at z, where w, € C*(A%B*)) in a neighbor-
hood of S, and w;, =w on S,. Since two candidates for w, differ by
(Iz> = 1o, say, where ¢ is smooth, 9, is well defined. Thus, if fis C* in a
neighborhood of S, then

(L1) W = S @)

where {, = dz, — z,0. Similar considerations produce d: C*(AYT*S,)) —
C>(A?TY(T*S))) with

(L.1y df = 2 (DS
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where & = dx, — ;x,dR? }dR* = = xdx;. It is obvious that 3, (resp. d) is
invariant under U(n + 1) (resp. O(n + 1)).
It is already time for the key observation of this paper:

(1.2) W= 2 (M)

0<j<k<n )
for f € C*(S,), where My, = 2,9, — z,3;, Wy, = Zdz, — £,dZ%; (0 < j, k < n).
Similarly, ’
(L2y df = 2 (W)W

i<k

f € C=(8,), where Wy, = x;D, — x, D;, w, = x,dx, — x,dx;. The proof is
trivial from (1.1) and the advantage obvious—the M, w;, are tangential. Only
the motivation must be supplied, and we turn to that now.

The My (0 < j,k <n) span Ty, at each z € §,, for X, z,M, = 9, —
z,(z - 9), the projection of 9, onto T, (S,) at z. We alsoput L = (i/2)(z- 9 —
7+ g), orthogonal to T, @ T, at each point and equal to J(3/3|z[?), where J
is the complex structure map: J(9)) = id,, J(E_)j) = —iéj.

Now it is easy to see how the W), arise from O(n + 1); we have W, f(x) =
d/dl f(xgcosf — x;sin 8, x,sinf + x, cos b, x,, - - -, x.) g0 TO see the
relation of the M, and L to U(n + 1) and OQ2n + 2), we define a variety of
maps. If z € C**, put z” = (zp, - - -, 2,), 2’ = (z,, z"). Define p(8), py,(8),
hyy 8, E U+ 1) (for @ ER) by: p(8) = e”z, py(8)(2) = (z,cos § —
z,sin 8, zysin @ + z, cos 8, z"), hyz = (izg, 2'), go = h;'. Also define j, €
OQ2n+ 2)byjy(2) = (2, 2)- I T € OQ2n + 2) and f € C*(S,), write Tf =
f o T. Then we simply have Lf =1(d/df)p(8)f|s—, The M, arise in a more
complex way: if Dy, f = (d/d8)p(#) flg-o Wwe have Dy = Ny, + N,, where
N, = 20, — 5,0, € T(S,). Also goDghy = ~i(Ny — Ngy). Thus Ny =
(Do + igoDo k). Finally, My, = joNo jo-

There are two significant consequences of this-first, M;A = AM,, etc.,
since elements of O(2n + 2) commute with A. Also, if f € C*, [5 M, fdS =
0, etc., since 4§ is invariant under O(2n + 2) and hence, in particular,
{ poi(8)f is independent of 4.

We hope that this has helped to motivate (1.2). There is probably a better
way to prove (1.2) than to compute from (1.1), but we do not see it.

At any rate, here is what we shall prove in this section. Put ¥, = E—),’," (formal
adjoint), [, = 3,9, + #,3,. Then if n = =, f,dz(J) € C*(A?) is tangential
on S, (summation over all increasing g-tuples J—that is, J with J =
Uo * * - s Jg—1 0 < jo < - -+ <j -y <n)wehave

(1.3) Oen = ;(Bafj)df(f) + o A%,
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where

a

£ = —% > (Mjklt_l-jk + ll7jk1\ljk) + ial +%(n —a)(n+ a),
J<k

provided & = n — 2¢g. We shall soon also see explicif formulas for 4,7, so
(1.3) is completely explicit.” Similarly, if 6§ = d*, A, = d8 + 6d, and n =
3 fdx(J) € C*(A?) is tangential on .S”, we have

(1.3y Am =X (D f)dx(J) + dR* A bn,
J

where @, = -3, _, Wa + (n ~ a)(n + « —2)/4,a = n — 24.

The similarity with H” is striking, except for the special role played here by
B#,-closed forms. For the representation-theoretic reason for why these forms
should be special, see Folland [2].

We have

B, =-A+ 2 zzd; +5(n+ a)z-3 +i(n—a)z- 3
(14) Hk

+1(n+ a)(n — a),

where z = 92/32,0%,, A = £, 37 (in our metric on C**"). Each operator on
the right side is invariant under U(n + 1), so £, is also (as it must be if (1.3)
is true). For-example, to check U'D = DU’ where D =23 z279; U €
U(n + 1), we need only check on second degree polynomials since both
sides are second order differential operators. Put ¥, = span,{z;z,}, V, =
span; {2z, 2, 2, z;, 1}; then D =id on V}, D=0on V,, U V, > V), U™
V, — V), so the result follows. Similarly,
(14 D, =-A+ 2 xxDy+nx-D+i(n+a—2)(n~-a)
is invariant under O(n +. 1).

We begin the proof of (1.3). If J =(jj, - ,j,-1 is a g-tuple, call J
injective if j, = j; implies k = /.- In this case, we write (J;j,) =
Vo =+ * sdk—v ks " ° ’jq—])> (5 e J) = (J5 J)s ) if _k #1, (J;m)=0if
m & J, dz(J; j,) = dz((J; j.), etc. If J is a g-tuple, ¢ > 1, we define the
tangential (¢ — 1) form w(J) by
(1.5) Cdz(J) =) + o Aw(J).

If J is not injective, W) =0. If J is injective, an expansion of dz(J) using
dz, = {, + z,0 shows ‘

(16) o) = 3 (5805 o).
(We put dZ(9) = §(¢) = w($) = 0.) Now
(1.7) o) = D5, 273 4).
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To see this, suppose J = (0, - - - — 1), w'(J)is the right side of (1.7); then
by (1.5) and (1.6), »'(J) = w(J) + a /\ ¥, where y = S(-1)z,w(J; k); but
(18) ¥=3 CW™538055, 0 + S (Y2580 k) = 0

i<k ivk
The w(J) are due to Folland [2]. Note w(j, k) = wy. From (1.5), J - o(J) is
alternating. We similarly have dx(J) = £J) + 3dR* A w(J) with similar
formulas for the tangential form w(J).

Some elementary relations:
n

(1.9) | S 2806 7) =0
(1.10) () =% 2,00k, J)

with obvious analogues for R"*!, For (1.9),

2 zl(k,J) = (2 Zkfk) AU = (3zP) A () = 0.
For (1.10), : '

o /\é zoll, 1) = S 2[di(k J) = §(k 1) = 0 A dZ(T) = 0 A L)

as desired. »

Put wy = (0, - - - , n). Then 0 A wy = dz(0, - - - , n), providing an orien-
tation on 7g,. In analogy to the Hodge operator, we define *: AYT§,) —
A"UTE) by ¢ A +¢ = (¢, YD, (¢, ¢ € A?). Similarly, on S” we let = be
the Hodge operator, ¢ N\ *¢ = {¢, Y >w(0, - - - ; n). If e3, - - - , e, is an ortho-
normal basis of T3, with ey A - - © Ae, = w,, We have

x(aeg N+ - Ne,_)=ae, \--- Ne, a€C.
This property defines =, so #+= (~1)?"~9, With this preparation, we can
compute 9,.

Lemma L1. (a)d, = —(~1)"@*D %3, . _

(b) (Folland) If J is a j-tuple, a,,w(J ) =J¢WJ), 38 = (n+ 1 — Hw(J),
50 9,¢(J) = dy(J) = 0.

(©) IfJis aj-tuple, f € C*(S,), then

3(fo(J)) = kz{ M fol(k, T) + JfE(J).
IfJ=(@,---,j—1),then
F(f(0)) = 2 (=)"z M, fulJ; m).

(Similarly, with d, 8, £, w, S”, etc. in place of 5b, ¥y, &, w, S, etc..)
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_ Proof. First we prove all the formulas for ;- By (1.1), & = 32, SO
9,5(J) = 0 for all J by the derivation formula. That 3,w(J) = j{(J) follows
from (1.6) and the derivation formula. Thus finally

Wp(fu(I)) = S+ jRJ), = E{Em A w(J).

Now
o N\ N(J) = =g A (d2(J) — $(J))
= zdi(k,J) — £, dZ(1,J) — z8(k, J) + £,8(1,J)
(expanding w;; by (1.6) then (1.7))
= o \[ Zw(k, J) = (1, J)]-
Thus
S =3 gMyfalk, J) — 3 5 Mfe(l, ),

k<l k<l

producing the formula of (¢) when one interchanges k and / in the second
sum.

For (a), put A = ¢ — &, a global section of (T, ® T\ o)*. Then if y = &,
/A, either y Aw, of —y A w, is the volume form on S,. Indeed,
dzPAA=3(c+ ) A(6—3) =35A0a;s0

dizP Ay Nwy=(-1)"0o N3 No A\ wy=dz(0,- - - ,n) A\ dz(0,- - -, n),
as desired. It suffices then to show that (g v /\5,,11 =0 for any 9 €
C"°(A""(T(’;‘,l ). For we would then have that if ¢ > 1, ¢ € C*(AY(T3)),
and ¢ € CP(AT"Y(T})), then

0= [ YARWA*D = [ YABY A0+ DT [ YAV ATsp
SII SII SII

= = ([ <o Burds + D [<aBrp w3).

as desired. Now by (1.10) we may assume 1 = fw(J) for some n-tuple J. We
may also assume J = (1, - - -, n). Then

Wn = X 5Myfw, + nf(J).
Since {(J) = zyw, by (1.10), we have
f YA = [ (21 5 Myf + nz, f)dS = g f M, (5,f)dS =0,

proving (a).
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Problem. Prove an analogue of (a) on general compact CR-manifolds.
For (b), we must show that

(» H{(J)=(n+1— jo(J).
(*) is equivalent to

(+%) if « E.span{dz‘llj-tuples I} and a = a; + 0 A apay, @,
tangential, then &, 0, = (n + 1 — j)a,.

(**) is unitarily invariant, so it suffices to prove #,{(J) = (n + 1 — j)w(J) at

the north pole N = (1,0, - - -, 0).

First suppose 0 & J. We may then assume J = (1, - - -, /), and must show
3,$(J)=0 at N. Let & = {f € C®(U) for some open U c C**' with
N € U such that f(N) = 3,(N) = @f(N ) = 0 for all j}. An easy computa-
tion shows ({;, §> = 8, + ay, a3 € &, 1 < j, k € n. By the Gram-Schmidt
process, we can find an orthonormal basis { S|l <j <n} of T§, in a
neighborhood of N in S, with 8; = (1 + b)(§; — T\ cy$p) with all b, ¢, €
& . Thus

() = (1 + ¢)B(J) = = (1 + &)B(J°) = £{(J°) + g g8(1),

where J¢ = (j + 1, - -, n), I, is sum over all (n — j)-tuples I and e,, all
8 €E&.Sod{(J)=0at N by (1.1) and (), if 0 & J.
Now it follows from &, = 3} and the derivation law that

(1.11) B (fn) = —ngTI + fOym,

where @1: A? - A% is the adjoint of p A : A7 > A" if ¢ is a 1-form. (If
€y, - *,é€, is an orthonormal basis, J injective, a € C, then ae le(J) =
* ae(J; i) for i € J, 0 otherwise, the sign being chosen according to whether
eNelJ;)=*ell))Soif feC=JT=(, - ,j)),

(1.12) H(F)) = - (D* B3R5 k) ath.
Now suppose J is injective, J = (0, K); we need to show
% ($(J)) = (n + 1 = j)S(K) at N.
We may assume K = (1, - - - ,j — 1). By (1.9), §(J) = -z,'2%; z.8(k, K);

J
so the result and (b) follow from (1.12).
Finally, for (c) we have
(folJ)) = - X Mpfo,lo(]).
i<m
Now if ¢ is a tangential 1-form and ¢ is defined to be the adjoint of
¢ A\ acting on g-forms on C", then it is obvious that ¢ly = @y if ¢ is
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tangential. Hence

W do(J) = 2,d2,,10(J) — z,,dz,10(J])
= z(-1)""(J; m) — 2, (-1) " '(J; 0) )

as can be seen readily from (1.7), and we are done.

Proof of (1.3). It suffices to prove (1.3) at N. For (1.3) is equivalent to the
following: ;

Suppose V), - -+, V,, € span{dz(I)|j-tuples I} and n =S¥ £V, is
tangential. Then |'_‘|,,n = (LS Vk +.0 A\ ¥7n. This latter statement is
clearly unitarily invariant.

Now {(K)0 € K, K a(q + 1)-tuple} spans A"(T(’,“l) in a neighborhood of
N. Indeed, by (1.10) it suffices to show that if I is a (¢ + 1)-tuple, 0 & I, then
() is in the span near N. This follows from an application of (1.8) to

= (0, I). Thus we may assume 1 = fw(J), J.= (0, - - - , g). By (1.10) it is
clear we have only to use Lemma 1.1(c); we begin this chore now. :

8,3,(folJ)) = m(g{ Btk T) + (q + WS stk )

= 2 ‘-Dp™- lziMim(Equka)w((k’ J); m)

(1.13)

+(g+ D))"z M, (ZJ)w((k J); m)

+[ 2"z Mk(ZIMklf) + (q + 1)2 ik(zkf)]‘*’(-,),
where 2’ denotes sum over k >gq,m <gandallil; 2" over k >q,m < q,

all i; " over k > g, all i, I; E"’ over k > g, all i. Also

— S )M Ml (T m))
S D naMfelk, T m)
+[ S EMaMuf) + 43 2 MS o),

(1.14)

where S° denotes sum over k < g, all i, I; S over k < q, all i. We might as
well write (k, J; m) = ((k, J); m) = (k, (J; m))in 3’ and 5.

. Now-one can unscramble all the commutators and arrive at (1.3), but it is
far easier to recall that we are at N. At N, w(k, J; m) (k > ¢, m < q) is zero if
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m=0; if m+#0, M, = §y9,. Thus at N the coefficient of w(k,J; m)
(k >j, 0 <m <q)in the sum of the right sides of (1.13) and (1.14) is

V" S 05bf) + 0,(2f) = S (B) M) + o]
| - [ = Saniai) + S |

We must have i = / = 0 for nonvanishing terms, whence the coefficient is
zero., .
The coefficient of w(J) is

g ak(EIHka) +(g+1) X d@zf) - 2 W(zMyf) = S, + S, + S,
k>gq k>4 l<llc<q
Now S| = = 8,(£,2,9,f) — = 8,(]z]%,f). If I = k in the first sum, the term
vanishes; so/ # k, I = 0 and .
=> ak(zk of) > akékf.= (n— 4)5of - akékf,
- k>q k>q . k>q
S, = (g + (n — q)f,
Sy = -2 8(1zP8f) + 2 3(22,9f) = - % 30,f + gy f.
<k<g
Altogether at N ’
Osm =[(-A + 355 + (n — 93 + gdp + (g + D(n — ))f]2,d2(J; 0) -
(L13) = ¢ (g)az(s; 0),
since (g + 1)(n — q) — (n — q) = g(n — g). At N the right side of (1.3) is

> (—l)kﬁa(ﬁk)dZ(J; k) + 2>0(—1)"'8mf(o A w(J; m)).

Now o A o(J; m) = dz(J; m) — {(J; m) = dz(J; m) at N if m + 0. We are
left to check that £ (fz,) + 9.f = O at N 1f k > 0. But at N, £,(fz) =
~A( fz;) and we are done.

For (1.3) everything is the same until we reach (1.15) which is replaced by

=[(=A + Doy + nDy + (g + 1)(n — g))f]xedx(J; 0)
= D,(fxo)dx(J; 0),
since (g-+ 1)(n — ¢) — n = g(n — g — 1). (1.3) then comes down to a check
that 9, (fx,) + 2D, f = Oat N if k = 0, which is true.
We shall need to extend this result to &, the conjugate dual of €B‘1 =

C®(AYT,,(S,))). Denote the sesquilinear pairmg by Qlp)© € &, 9 € B,
linear in @). Let &’ = &, and = {all forms (not necessarily tangential)
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¢ =2 f;dz(J) with f; € C*(S,)}. If © is a formal sum X f,dz(J) (sum over
all increasing g-tuples J, each F, € &), ¢ € 7 as above, let us put [Q|¢] =
Z(Fy| f;)- Then we can view 2 € &,. Now &, is in bijective correspondence
with the set of all such Q satisfying [2|o A ¢'] = 0 for all ¢’ € 7! (we set
Qlp) = [Q|¢] if ¢ € B7). We call such Q tangential. For clearly a tangential
© defines an element of &,. If € = 0 in &, it follows that [Q|g] = 0 for all
@ € (7, whence all F, = 0. Conversely, if I' € &, is supported in a small
enough open set U that there exists a set of smooth g-forms {e(K)}, on U
such that the forms are an orthogonal basis at each point of U, we surely have
T =3 Gge(K) = 2 Fydz(I) for certain Gy, F;, € &’ supported in U. Here
S Gye(K) has the obvious meaning. This latter consideration shows that each
Q2 € &, can be written in the form X H {(K) =3, P,o(I) (certain Hy,
P, E &)

Now 3, #, can be extended to maps from &, to &, , &,_; respectively
through duality (i.e., the relations (3,2|p) = (Q|%,¢), (3,2|p) = (2|3,9)). If
Q = fu(J), we have Lemma 1.1(¢c) if f is smooth and hence if f € &' since
C*is dense in &’. Thus if £, — fin &', all f,, € C=, Q,, = f,w(J), we have
3,2,, > 9,2 in &,_, and, using (1.10), that 4,,2,, — 4,3,2; also 9,9, — 9,2
and [,2,, —[,2. We must then have (1.3) for 5 =, whence for any
n € &, (n expressed in tangential form). Further, the right side of (1.3) is
tangential. -

We shall of course write F(f) =(F|f)if F € &',f € C*.

Remark. We indicate the interaction of £,, %, with spherical harmonics;
we shall not be needing these facts later.

If P is a spherical harmonic in R"*! of degree k (a harmonic polynomial,
homogeneous of degree k),

GDaP=(k+ ”;“)(k+fi;—_3)1>

as can be computed readily from (1.4), the case a« = n being well known. If P
is a bigraded spherical harmonic of type (2, g) on C**! (a harmonic poly-
nomial which is a linear combination of terms of the form z°Z7, p, ¥
multi-indices with |p] = p, |y| = g), then

er= (o4 5 250

which agrees with formulas in [2]. Since the restrictions of bigraded spherical
harmonics to S, span a dense subspace of LX(S,), one conjectures that £, is
invertible if and only if +a = n,n + 2, - - - as on H"; we shall see this next.
Since MyA = AM,, M, maps (p, g)-harmonics to (p — 1, g + 1)-
harmonics; this observation was what led the author to (1.2).
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2. Selving £, 9,

In this section we determine fundamental solutions for £, 9,; it is not
immediately apparent how this helps to solve [,, A,, but we show how it does
in the next section. We have no more use for the forms {(J), £V) and free the
letters {, § for other purposes.

It will help to remember Gauss’s hypergeometric equation:

2.1 s(1—9s)f" +[c—(a+ b+ 1s]f —abf=0,

wheres €C, f= f(s),a,b,c € C.Put(a)y=1,(a),,=a(a+ 1) - - (a+m
— 1) for m €N, then F(a, b, c;s5) = 25 _oP,5™ is a solution of (2.1) in
{Is| < 1} if p,, = (@),.(D),./[(¢),,m!] and ¢ & Z"= {0, -1, -2,- - - }. If also
a, b & Z~, we have, for example (a),, = I'(a + m)/T(a). From this,

(22) P = T()T(a)'T(B)'m* (1 + O(m™)),

where d = a + b — ¢, since p,, = p,I'(m)*/T(m)* and, e.g., T'(a + m)/T(m)
= m?1 + O(m™)) (from the Stirling series for log T). (For real a this is easy:
from the convexity of log ', (m + a — 1)* < T(a + m)/T(m) <m®if 0 < a
< 1, m €N. log T is convex because (log I')"(x) = EZ_o(x + n)2) Now if
leR,1&Z, put g, =(I),,/m!, then 2 g s"=(1—-2s)" If =0, put
4 = 1/m, then ¥ g,,s™ = log(l — 5). Suppose d > 0 and put g,, = q,, .
Then g, = T(d)"'m* (1 + O(m™)). Put B = T(c)[(d)[(a)'T(b)""; then p,,
= Bg,(1+0m™M). ¥ d#1, g,;, 1=¢q,d—-1/d+m=-1); if d=1,
4o = 4/ m. Thus O(q,,m™) = O(q,,,_,)- Finally,

(2.3) lim (1 — s)°F(a, b, c; s) = B.

This will be useful. If d = 0, we have directly from (2.2) that F(a, b, c; 5) =
C log(1 — s) + g(s), where g is continuous in {|s| < 1}; while if d <0,
|F(a, b, c; 5)| is continuous in |s| < 1. Put G(a, b, ¢; 5) = Fla, b, c;
(1+9/2),8=(n+a)/2y = (n— 0)/2, and jp () = G(B — 1, v; n/2; x
), G (D)= =z )P — z-§)7 for x,§ € S, 2,§ € S, Write y, =
Vo x> Pu = Pon- (Here 1 — z - { always lies in the right half plane, and we use
the principal branch of the power functions.)

Theorem 2.1. 9Dy, . = b,8;, L, @, = c,& where

b, = 27" *T(n/T(B — 1)'T()", ¢, = 27"+ 2"+ 'T(B) T ()™

Proof. We may assume £ or { = N and just write {,, ¢,. Now if g =
g(xp), then —D,g = (1 — x3)g" — nxog’ — (B — Dyg. (By the way, this
equation is closely related to the Legendre equation.) If f(u) = gRu — 1),
then -, g = u(l — w)f” + [n/2 — nu]f’ — (B — 1)yf (differentiation with
respect to u). Thus 9y, = 0 away from N. For -1 <s <1 we apply
Green’s theorem in the region Q@ = {x|x, < s}, put 'y = {x|x, = 5}, and
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recall A, = 9, on O-forms. Thus if f € C*(S,), then

fr (foy,/0n ~ ,3f /on)dm = fg (fDnte = $aD,f)dS
= fﬂ (fDuta — D, f)dS

= —f lpaépaf dS’
Ql
since D, = %, + (B — 1)y. (m = measure on I',). Now

n(n—1)/2_n/2
fdm=2(1—s) 2qpn/ .
T I(n/2)
since the radius of T, is (1 — s?'/2 Thus [ y,(3f/9n)dm —0 as s — 1 by
(2.3) (in this case d = (n — 2)/2; note 1 — s2 = (1 + 5)(1 — 5)). By orthogo-
nal invariance dy,/0n is constant along I',. At (x4, x;,0,---,0 €T,
3/3n = x4D; — x,Dy = W), so here
Y,
an

(B -1y

n

n

JG(,B,7+ 1; 3 + l;xo).

= -x;D¢y, = -1~ 32)1/2[

Letting s — 1 we find

4 Duf aS

- a1 (B= Dy a"2 . (1—2\"? .n

= f(N)2 - r(g)lgr}( 7 ) G(,B,y+1,5+1,s)

= b.f(N)
by (2.3). Since 9, is obviously self-adjoint, we then have only to
show that v, is integrable on S”. By (2.3) it suffices to show (1 — xp)™ or
equivalently A(x,) = (1 — x3)™ is integrable near N where d = n/2 — 1 (at
least if n > 3). But if xo =cos @, E = S" N {x¢ > 0}, then [ A(x))dS =
¢ [3/%(sin @)™ **(sin 8)"~' df. n = 1 or 2 is similarly dismissed.

For £,, we do not know if there is an effective analogue of Green’s

theorem; so in analogy to [3] we begin by defining, for 4 > 1, &, =
(A = zo) (A4 — Z)". I f = f(z,) we have

~Luf = (1 = |20/*)305.f — BZodof ~ Y200 S — B,
so that £,®, = ¢, = By(4% — )4 ~ zoy B4 — zp™@*D. We must
prove the following two results: (a) |1 — z,|™ is integrable on S,, (b)f ¥, dS
— ¢, as A — 1. For we shall know from (a) that &, — ¢ as distributions by
-dominated convergence, and from (b) that £ ¢ = ¢,8 since the mass of ¥
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concentrates at N. Both facts are consequences of the following: if a, b € C,
A>1,f(A,a,b; z) = (A — 25 (4 — Zp)™®, then

(2.4) f f(A4, a, b; zg)dS = 27Vt iyt 4O F(a by n + 15 472).
Sn

Indeed, if (2.4) is known, then for (a), if a = b = n/2 we should haved = -1 -
sothatlim, . ; fs f(4, a, b; z,) dS exists. But, if z, = x, + iy, then

4, a,b; z5) = |4 — zo| " = [(A - x0)2 + J’é]

Thus f(A, a, b; z,) 7 |1 — z5|™ which is hence integrable by the monotone
convergence theorem. Also (b) follows from (2.4) by (2.3).

To prove (2.4) we recall a well-known device: suppose s, ¢ are (n + 1)-

tuples of nonnegative integers, and put p = 1(|s| + |¢|), where |s| = = s;. Then

-n/2

1= [ £asE) = (p o+ i [Tk

= 2/%(p + m) [ zFtetlay
c

= 27+ tig st (|s] + )t

(Write the last integral as a product. Here §, = I st " s!=IIs;! and the twos
are caused by our choice of volume element.) In particular, '

f 2825dS = 27" ’nm8 g1 (g + n)17.
If we expand (1 — zo4 ") and (1 — Z,47")™ in power series and integrate
termwise, we then find (2.4), as desired.

It is perhaps curious that (2.3) plays such a crucial role in two such
different ways. However, one should be aware that hypergeometric functions
come up in many different contexts in analysis on the sphere.

If we are on S,, *a#n,n+2,--- (ie, when ¢, #0), we-say « is
admissible and put ®, = ¢'¢,. If we are on S”, *a#n, n +2,- -+ and
a 7 —n + 2, we say a is.admissible and put ¥, = b;%,.

Now there is no natural notion.of convolution of general functions onsS,,
butif f € L=(S,), ® € L'(S,), and ® = ®(z,) we can define f* ® € L=(S,)
by

frd(z) = fs £&)0(z - £)ds(g).

If U € U(n + 1), one trivially computes U(f* ®) = Uf * ® (recall Ug =
g ° U). From this—and the way that the Ny, L arise from U(n + 1) (see the
discussion after (1.2))-one finds readily that if f is smooth, ]\fjk(f* P)(z)
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exists for all z and equals (N, f) * ®(z); similarly for ]ij and L. Thus f = @ is
smooth if f is, since the N, N,, L span 7(S,) at each point. (Indeed,
2 ZNy + 2iz L = 3 — Z,(z- 9) so that T, is in the span, etc.) Further,
since N N, + Ny Ny = M, M, + M, M, as a computation shows, one has
P (f*®) =L [

If h is a function on S,, put k(z) = h(Z). It is obvious that if f, g € L>,
and P as above, we have :

[ (8 + D)M2)aV(z) = [ &S * BNV Q).

Thus, if g € §'(S,) we can define g *® € &' by g« B() =g(f+ D) (f €
C®). If ® is smooth on S,, one easily finds that g + ® is smooth and
g * ®(z) = g(®,) where ,(¢) = ®(z- ¢ ). If, instead, g is zero on some open
set U and ® is smooth (respectively, real analytic) away from N, it is easy to
see that g = @ is smooth (resp. real analytic) on U.

We define K,: &’ —> &’ by K, (g) = g * ®, if « is admissible. Then we
have

Corollary 2.2. (a) £ K, = K £, = I. (b) £, is locally solvable, injective on
&’ and hypoelliptic. (c) £, is (local) analytic hypoelliptic (i.e., if f € &',
£ f = u is real analytic on U, then f is real analytic on U).

Proof. For (a), the duals on &’ of £, K,: C* - C® are £_,, K_; so we
have only to show the identity on C®. But if f € C*, then £ K f=
Bo(f+®) =E,f*®, = KL f, while K £ f(z) = ®,,(C,f) (see notation
above) = (B, ®,.)() = (a9, )(f) = 8,(/) = A(2). This gives (b) in a
simple standard way-see [3] for the same proofs on H". (¢) is also standard
but we include a proof. £, has many noncharacteristic surfaces at each
point—e.g., by (1.4) it is easy to see that {Re z, = 0} is noncharacteristic at N.
Thus by Cauchy-Kowalewski, if p € U, we can find g real analytic in a
neighborhood of p with £ g = u there. With p a suitable cutoff function,
£,(f — pg) = 0 near p, whence f = pg + K,£,(f — pg) is real analytic at p.

Everything since Theorem 2.1 has an obvious analogue for 9_, a admissi-
ble. '

We shall see in the next section how to derive analogous results for A, [],
on g-forms when a = n — 24 is admissible. As for nonadmissible values,
there is no point in worrying about n-forms; since [J,*= (-1)" * [J, by
Lemma 1.1(a), questions about n-forms are at once reduced to questions
about O-forms. So we need only concern ourselves with £, and %, since
D _nezy = Dpe

In anticipation of an analogy with [5], we begin by setting, for 0 <r < 1,
S,(2) = C,(1 — rz)™*D, C, = 2"V 212z )y If Q(2) = C)(1 — rzp)™,
C,=-2C,/n,one has S, = (iL — n/2)Q,. Now Q, > C,¢, in 6’ as r - 1;
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thus S, has a limit in &', say S|, and .
(2.5) S, = C)(iL — n/2)p,.

It is then apparent that f + S, has a limitin C* if f € C*, and-by duality—in
&’ if f € &’; this limit one calls f * S; = C,f (C, = Cauchy-Szego map). We
define Cf on B**! = {|z| < 1} by putting Cf(z) = f * S,(z/|z]). Then Cf is
holomorphic on B**!. If f =0 near P € S,, it is easy to see that Cf has a
holomorphic extension past P.

It is known that f € L?= C,f € L?; we shall not need this.

If z€ S, let 8(z) =logl(1 — zp)/(1 — Zp)], zo7# 1. We let ®,(z) =
2"V (mya N1 = 2y 0(2), Kog = 8+ B,(g € 6).

Theorem 2.3. (2) £,K, = K,£, = I - C,.

(b) Suppose f € &'. Then 3,(Cof) =0; f= Cof, iff 8,f =0; C2 = C,;
(flg) = Oforallg € C*® N ker d,, iff Cof = 0, iff f € 9,6/.

© IfP €S, fE &', then (i) there exists u € &’ with [J,u = f near P iff
(ii) C.f is real analytic near P, iff (iii) Cf has a holomorphic extension past P, iff
(iv) there exist vy € &', (0 < j <k <n), with f =3 Myv, near P. (When

"n =1, this reduces to f= Myvy near P; My is the analogue of Lewy’s

unsolvable operator on S,.)

@) If f € &’ is real analytic near P, then Cf has a holomorphic extension
past P.

(e) Suppose f € &,&]. Then there is a unique u € 3,&| such that [J,u = f;
Sfurther u is smooth or real analytic on any open set where f is. In particular,
C*® = V|, @ V, (orthogonal direct sum) where

V) = ker 3| co = ket [yl ce = Go(C™),
V,= 3B =[0,C™ = - G)Cc™.

Proof. For (a) one has only to show £ & = § — S, for then one can
argue as Corollary 2.2(a). To prove this, one differentiates £ ¢, = ¢,6 with
respect to a at « = n. That is, one divides this equation by a — »n and lets
(real) @ — n, using (2.5) and the dominated convergence theorem with the
estimate (™ — 1)/a| = 2|sin(fa/2)/a| < 8. For (b), we have 3,(f * S,) = 0
for r < 1,50 9,Cof = 0. Thus f = Cof => 3,f = 0, while if 3,f = 0, 0 = 9,3,f
= (I — C,)f. Since 3,(C,f) =0, Cof = CH. If (flg)=0forall g C*nN
ker 3,, (f|C,G) = 0 for all G € C*, so (C,f|G) = 0 for all G, and therefore
Cof = 0.1f Cf = 0, then f = (I — C,)f = 9,0,f € 9,6{. If f € $,8, clearly
(flg) =0 for all g € C* N Ker i_ib. For (c), (ili)= (ii) is trivial, (ii) = (1)
follows from (a) and Cauchy-Kowalewski as in Theorem 3 of [5], (i) = (iv)
follows from the relation £, =3, Mjkit_ijk which in turn follows from
(M, M) = -20; — 7,0, + 20, + 0, j # k, and (iv) = (iii) by Theorem 2
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of [5] with 4, = M, one having only to note that (iii) is a local condition on
S and that CM;, = 0 since M;®,=0if @ (6 = S(z- ). (d) follows from
(1) = (ui) and Cauchy-Kowalewskl For (e), if 4y = K, f, then [J,u, = f by (b)
and (a); thus [J,u = f if u = (] — Cy)u, since 3,C, =0, and u € 4,6;. If
O,v =0, and v € 4,&/, then v = (I = C))v = K,[J,v = 0. If f is smooth
near P, so is uy. Then uy, = u, + u, where u, is smooth and u, = 0 near P.
Thus (I — C,)u, is smooth near P and (I — C,)u, is real analytic near P, and
hence u is smooth near P. If f is real analytic near P, we can, by Cauchy-
Kowalewski, find g € &’ real analytic near P with £,g = f near P. Then
P,(u—g) =0 near P, and u=(I - Cu=K,L,(u— g + (I - C)g
which is real analytic near P by (d), completing the proof.
For 9, one has a similar result. We put, if n > 1,

l)m( 1+ x, )"‘
‘I’ (.X = B ’
=82 Eame(
where B, = T(n — 1)2—?w-"/2r(n/2)—‘ while if n = 1,

. — D1+ x\"
\I,l(x) Bl 2 (1/2)m ( 2 ) ’
where B, = 27)!. Let Q(x) = nB,. It is easy to see by induction on
n that nB, equals the reciprocal of the area of S", ie., nB, =
T'((n + 1)/2)/27"+1/2 5o that if we define H: &' > & by Hf = f+ Q, H
simply projects L? onto the constant functions. Thus we have

Theorem 24. (a) ¥, € L'(S"). Define J,: &' > &' by J.f = f x ¥,. Then
D, J,=J,9D,=1—H.

(b) Suppose f € &'. Then (f|Q) = 0iff Hf =0, iff g € 36/,

(©) D, is locally solvable, hypoelliptic and analytic hypoelliptic, C* =V, @

V, where V| =Xerd|c. =ker Aj|ce = HC®, V,=8(C®(AY) =A,C* =
(I - H)C®.
" Proof. For (a), again one divides 9y, = 5,8 by a — n, and lets (real)
a — n, except when n = 1 when one divides by (I — a)* and lets (real) @ — 1.
When n > 1 one has only to check the validity of applying the dominated
convergence theorem to assert that

Sma (1 + x0)/2]7 — i s”;[(l +x0)/2]™

1 m=1

in L' if 5,, = (8 — Dy(y + ,/[(n/2),,m!], (B,y as usual), and s, =
(n — 1),,/[(n/2),,m]. Invoking the estimate

(@) =[T(m)/T(a)][T(a + m)/T(m)] < m°T(m)/T(a),

T M8
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if a is real, one finds |s,, .| < m™*7T(B — 1) 'T(y + 1) < C(d),,/m! with
d=n/2 — 1(some C > 0)if n > 2, so that the convergence is dominated by
C’(1 — x9)™ as desired. There are obvious modifications for n = 1 or 2. (b)
and (c) follow from (a) by methods we have already seen.

3. Solving [, A,

The cases ¢ = 0 and ¢ = n are explained by Theorems 2.3 and 2.4. For
0<g<n welet I ={(f€ &,;|9f=0}. Clearly, [J,: I, —» I/; and if
n = Z f;dz(J) € T, is tangential, we have [,n = (£, f))dz(J), « = n — 2q.
We would be very disappointed if 7" = Z(K,f;)dz(J) were not tangential and
in J; so that [J,n’ = 7. We are forced to conjecture and prove the following
lemma.

Lemma 3.1. Suppose n = 2 f;dz(J) is tangential and in J,;, ® = ®(z,) €
L'(S).

() Then v’ = Z(f; * ®)dz(J) is tangential and in I .

®YIf®=1,theny = 0.

Proof. (a) ® may be approximated in L' by a sequence of C* functions
-h,,; setting

O(2) = [ By(z0 Uz)dn(U),
U(n) :

where z = (z,, z), and p is Haar measure on U(n), we find &, — & in L!
also. Thus we may assume @ is smooth on S,.

First, we show that ’ is tangential. For more clarity, we think of ® as a
function on S, and define ¢: D —> C where D = {z | |zo| < 1} by @(zy) =
O(z,, 2') if (24, z') € S,,. Then ¢ is smooth on D and continuous on D; thus,
by use of cutoff functions, we may assume ¢ is smooth on C and has compact
support within D.

Now since 7’ has smooth coefficients, we have only to show that {7/, 6 A
B> =0 for each z € §, and each B € A7 '(T§,(C")) where { > represents
the inner product on A%7§,) at z. We may assume B = dz(J), J =
©,---,q9—2); 8 =1if g = 1. Then we must show that

n

> Zi frr(®;) =0
k=g—1
for all z, or that for each z, [|7,] = O where

n

Tz(g) = 2 Zk(ﬁ(z . f)df(k’ J)’ »

k=qg—1
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writing d{ in place of the usual dz. Now select ¢ € C®(C) (coordinate w)
with oy /0w = ¢, e.g.,

¥w) = @ri) 50 TR

see [6, p. 25). Fix z € §,, ¢ € C*, and put p({) = ¢(z - {)d{(J). Then dp =
7,. Since p = pu; + o N\ ;,12, where p, restricted to S, is tangential, we have
3 = oy + 0|z A O, = 3y + 0 A pa, say; so [n]7,] = O as desired.

We next prove 9,7’ = 0. Put &(z) = &(z - {), and a = n — 2¢. We claim
£, (®)(z) actually depends only on z - ¢, equalling ¥(z- {), say. Indeed, if
o € S, satisfies z-§ = N-§{,, we can find U € U(n + 1) with UN = z,
Ug, = §. Since £, is invariant under U(n + 1), we have

Lol @)(2) = LL(U'PYN) = L(@TNN) = L (P)(N)

as desired. ¥ is of course smooth in z if { = N. Now by (1.3), (0,7 =
3(f; * W)dz(J) + o A 9,7'. The first term on the right side is tangential by
the first part of the proof; so ¢ A 9,7’ is tangential, and hence 4,1" = 0.

For (b), if ® =1, f; » ® =(n'|y) where y = dz(J) = * E_)(dez'(J; ky) if
ke J,soy =0.

There is of course an R"*! analogue of this lemma, which is easier since
one only has to solve &y /dx = ¢ on R. ,

With the lemma proved, we are completely in the clear. Let ¥} = 8,561.

Lemma 3.2. l:lblg; is an isomorphism for 0 < g < n, hypoelliptic and ana-
btic hypoelliptic, with an analogous situation for A,.

Proof. This follows at once from Corollary 2.2, Theorem 2.3(¢) and
Lemma 3.1(a). The only small worry is the case ¢ = n — 1 of the R"*!
analogue; but if 7 = X f,dx(J) is tangential and 8y = 0, then ¥ Hf,dx(J) =
0 by Lemma 3.1(b), so this case is also covered by Theorem 2.4.

Theorem 3.3. [, on 8q’ is an isomorphism for 0 < q < n, hypoelliptic and
analytic hypoelliptic, with an analogous situation for A..

Proof. We prove [, is injective. Suppose u € &, [J,# = 0. Then 9,7, u
=[0,%u =0 and $u € I, ;; so $u=0; so u € J, and (yu = 0; so
u=0.

We prove [, is onto. Suppose f € &,. Then 8,f € I, , and therefore
there is a unique v, € I, ; with [J,0, = 0hf Also there is a umque 0, € 9.,
with [0, = vl Thus v, = 4,0, wtih v; = 3,0,. Now 3,(f — J,v;) = 0. So
f— O3 € 9, and there is a unique v, € I, with f — [J,0, = [J,v, Hence
u = v; + v, is the unique solution of [, u = f.

Since vy, vy, v3, and v, are all smooth or real analytic on any open set
where f is, the remaining statements follow.

¢-1>
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